Lie point symmetries and an approximate solution for the Schrödinger–Newton equations

Библиографические подробности
Главные авторы: Robertshaw, O, Tod, K
Формат: Journal article
Опубликовано: 2006
_version_ 1826274150810910720
author Robertshaw, O
Tod, K
author_facet Robertshaw, O
Tod, K
author_sort Robertshaw, O
collection OXFORD
description
first_indexed 2024-03-06T22:39:05Z
format Journal article
id oxford-uuid:5ae8fe8a-07f8-4b2c-9c81-ea21bfd5b7ae
institution University of Oxford
last_indexed 2024-03-06T22:39:05Z
publishDate 2006
record_format dspace
spelling oxford-uuid:5ae8fe8a-07f8-4b2c-9c81-ea21bfd5b7ae2022-03-26T17:18:50Z Lie point symmetries and an approximate solution for the Schrödinger–Newton equationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5ae8fe8a-07f8-4b2c-9c81-ea21bfd5b7aeSymplectic Elements at Oxford2006Robertshaw, OTod, K
spellingShingle Robertshaw, O
Tod, K
Lie point symmetries and an approximate solution for the Schrödinger–Newton equations
title Lie point symmetries and an approximate solution for the Schrödinger–Newton equations
title_full Lie point symmetries and an approximate solution for the Schrödinger–Newton equations
title_fullStr Lie point symmetries and an approximate solution for the Schrödinger–Newton equations
title_full_unstemmed Lie point symmetries and an approximate solution for the Schrödinger–Newton equations
title_short Lie point symmetries and an approximate solution for the Schrödinger–Newton equations
title_sort lie point symmetries and an approximate solution for the schrodinger newton equations
work_keys_str_mv AT robertshawo liepointsymmetriesandanapproximatesolutionfortheschrodingernewtonequations
AT todk liepointsymmetriesandanapproximatesolutionfortheschrodingernewtonequations