Random walk on temporal networks with lasting edges

We consider random walks on dynamical networks where edges appear and disappear during finite time intervals. The process is grounded on three independent stochastic processes determining the walker's waiting time, the up time, and the down time of the edges. We first propose a comprehensive an...

詳細記述

書誌詳細
主要な著者: Petit, J, Gueuning, M, Carletti, T, Lauwens, B, Lambiotte, R
フォーマット: Journal article
出版事項: American Physical Society 2018
その他の書誌記述
要約:We consider random walks on dynamical networks where edges appear and disappear during finite time intervals. The process is grounded on three independent stochastic processes determining the walker's waiting time, the up time, and the down time of the edges. We first propose a comprehensive analytical and numerical treatment on directed acyclic graphs. Once cycles are allowed in the network, non-Markovian trajectories may emerge, remarkably even if the walker and the evolution of the network edges are governed by memoryless Poisson processes. We then introduce a general analytical framework to characterize such non-Markovian walks and validate our findings with numerical simulations.