On the Duffin-Schaeffer conjecture
Let ψ : N → R>0 be an arbitrary function from the positive integers to the nonnegative reals. Consider the set A of real numbers α for which there are infinitely many reduced fractions a/q such that |α − a/q| 6 ψ(q)/q. If P∞ q=1 ψ(q)ϕ(q)/q = ∞, we show that A has full Lebesgue measure. This answe...
Auteurs principaux: | Koukoulopoulos, D, Maynard, J |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Princeton University, Department of Mathematics
2020
|
Documents similaires
-
An almost sharp quantitative version of the Duffin-Schaeffer conjecture
par: Koukoulopoulos, D, et autres
Publié: (2024) -
New Characterizations and Representations of the Bott–Duffin Inverse
par: Jiabao Wu, et autres
Publié: (2023-01-01) -
C. Schaeffer'in Konferansları
par: Tahsin Özgüç
Publié: (1948-01-01) -
Duffin-Kemmer-Petiau equation in Robertson-Walker space-time
par: Falek Mokhtar, et autres
Publié: (2010-06-01) -
Entrevista. Jean-Marie Schaeffer
par: Elena Yrigoyen
Publié: (2022-09-01)