The fatty acid synthase gene is a conserved p53 family target from worm to human.

The discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here...

Full description

Bibliographic Details
Main Authors: D'Erchia, A, Tullo, A, Lefkimmiatis, K, Saccone, C, Sbisà, E
Format: Journal article
Language:English
Published: 2006
_version_ 1797070533297176576
author D'Erchia, A
Tullo, A
Lefkimmiatis, K
Saccone, C
Sbisà, E
author_facet D'Erchia, A
Tullo, A
Lefkimmiatis, K
Saccone, C
Sbisà, E
author_sort D'Erchia, A
collection OXFORD
description The discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here, we report that the fatty acid synthase (FAS) gene, encoding for a key enzyme involved in the biogenesis of membrane lipids in rapidly proliferating cells, is a conserved target of the p53 family throughout the evolution. We show that CEP-1, the C. elegans p53 homolog, is able to bind the two p53 family responsive elements (REs) identified in the worm fasn-1 gene. Moreover, we demonstrate that fasn-1 expression is modulated by CEP-1 in vivo, by comparing wild-type and CEP-1 knockout worms. In human, luciferase and chromatin immunoprecipitation assays demonstrate that TAp73alpha and DeltaNp63alpha, but not p53, TAp73beta and TAp63alpha bind the two p53 REs of the human FASN gene. We show that the ectopic expression of TAp73alpha and DeltaNp63alpha leads to an increase of FASN mRNA levels, while their silencing produces a decrease of FASN expression. Furthermore, we present data showing a correlation between DeltaNp63alpha and FASN expression in cellular proliferation. Of relevant importance is that fasn-1 is the first CEP-1 direct target gene identified so far in C. elegans and our results suggest a new CEP-1 role in cellular proliferation and development, besides the one already described in apoptosis of germ cells. These data confirm the hypothesis that the ancestral functions of the single invertebrate gene may have been spread out among the three vertebrate members, each of them have acquired specific role in cell cycle regulation.
first_indexed 2024-03-06T22:40:15Z
format Journal article
id oxford-uuid:5b4e67c8-371a-49b8-a905-73725c612fdd
institution University of Oxford
language English
last_indexed 2024-03-06T22:40:15Z
publishDate 2006
record_format dspace
spelling oxford-uuid:5b4e67c8-371a-49b8-a905-73725c612fdd2022-03-26T17:21:15ZThe fatty acid synthase gene is a conserved p53 family target from worm to human.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5b4e67c8-371a-49b8-a905-73725c612fddEnglishSymplectic Elements at Oxford2006D'Erchia, ATullo, ALefkimmiatis, KSaccone, CSbisà, EThe discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here, we report that the fatty acid synthase (FAS) gene, encoding for a key enzyme involved in the biogenesis of membrane lipids in rapidly proliferating cells, is a conserved target of the p53 family throughout the evolution. We show that CEP-1, the C. elegans p53 homolog, is able to bind the two p53 family responsive elements (REs) identified in the worm fasn-1 gene. Moreover, we demonstrate that fasn-1 expression is modulated by CEP-1 in vivo, by comparing wild-type and CEP-1 knockout worms. In human, luciferase and chromatin immunoprecipitation assays demonstrate that TAp73alpha and DeltaNp63alpha, but not p53, TAp73beta and TAp63alpha bind the two p53 REs of the human FASN gene. We show that the ectopic expression of TAp73alpha and DeltaNp63alpha leads to an increase of FASN mRNA levels, while their silencing produces a decrease of FASN expression. Furthermore, we present data showing a correlation between DeltaNp63alpha and FASN expression in cellular proliferation. Of relevant importance is that fasn-1 is the first CEP-1 direct target gene identified so far in C. elegans and our results suggest a new CEP-1 role in cellular proliferation and development, besides the one already described in apoptosis of germ cells. These data confirm the hypothesis that the ancestral functions of the single invertebrate gene may have been spread out among the three vertebrate members, each of them have acquired specific role in cell cycle regulation.
spellingShingle D'Erchia, A
Tullo, A
Lefkimmiatis, K
Saccone, C
Sbisà, E
The fatty acid synthase gene is a conserved p53 family target from worm to human.
title The fatty acid synthase gene is a conserved p53 family target from worm to human.
title_full The fatty acid synthase gene is a conserved p53 family target from worm to human.
title_fullStr The fatty acid synthase gene is a conserved p53 family target from worm to human.
title_full_unstemmed The fatty acid synthase gene is a conserved p53 family target from worm to human.
title_short The fatty acid synthase gene is a conserved p53 family target from worm to human.
title_sort fatty acid synthase gene is a conserved p53 family target from worm to human
work_keys_str_mv AT derchiaa thefattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT tulloa thefattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT lefkimmiatisk thefattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT sacconec thefattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT sbisae thefattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT derchiaa fattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT tulloa fattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT lefkimmiatisk fattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT sacconec fattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman
AT sbisae fattyacidsynthasegeneisaconservedp53familytargetfromwormtohuman