An adaptive random bit multilevel algorithm for SDEs

We study the approximation of expectations E(f (X)) for solutions X of stochastic differential equations and functionals f on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is base...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Giles, MB, Hefter, M, Mayer, L, Ritter, K
Այլ հեղինակներ: Hickernell, FJ
Ձևաչափ: Book section
Լեզու:English
Հրապարակվել է: De Gruyter 2020
_version_ 1826311108315578368
author Giles, MB
Hefter, M
Mayer, L
Ritter, K
author2 Hickernell, FJ
author_facet Hickernell, FJ
Giles, MB
Hefter, M
Mayer, L
Ritter, K
author_sort Giles, MB
collection OXFORD
description We study the approximation of expectations E(f (X)) for solutions X of stochastic differential equations and functionals f on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the Lévy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.
first_indexed 2024-03-07T08:03:30Z
format Book section
id oxford-uuid:5b7116c6-d52b-42b6-a910-517d9131e0c4
institution University of Oxford
language English
last_indexed 2024-03-07T08:03:30Z
publishDate 2020
publisher De Gruyter
record_format dspace
spelling oxford-uuid:5b7116c6-d52b-42b6-a910-517d9131e0c42023-10-17T10:49:32ZAn adaptive random bit multilevel algorithm for SDEsBook sectionhttp://purl.org/coar/resource_type/c_1843uuid:5b7116c6-d52b-42b6-a910-517d9131e0c4EnglishSymplectic ElementsDe Gruyter2020Giles, MBHefter, MMayer, LRitter, KHickernell, FJKritzer, PWe study the approximation of expectations E(f (X)) for solutions X of stochastic differential equations and functionals f on the path space by means of Monte Carlo algorithms that only use random bits instead of random numbers. We construct an adaptive random bit multilevel algorithm, which is based on the Euler scheme, the Lévy-Ciesielski representation of the Brownian motion, and asymptotically optimal random bit approximations of the standard normal distribution. We numerically compare this algorithm with the adaptive classical multilevel Euler algorithm for a geometric Brownian motion, an Ornstein-Uhlenbeck process, and a Cox-Ingersoll-Ross process.
spellingShingle Giles, MB
Hefter, M
Mayer, L
Ritter, K
An adaptive random bit multilevel algorithm for SDEs
title An adaptive random bit multilevel algorithm for SDEs
title_full An adaptive random bit multilevel algorithm for SDEs
title_fullStr An adaptive random bit multilevel algorithm for SDEs
title_full_unstemmed An adaptive random bit multilevel algorithm for SDEs
title_short An adaptive random bit multilevel algorithm for SDEs
title_sort adaptive random bit multilevel algorithm for sdes
work_keys_str_mv AT gilesmb anadaptiverandombitmultilevelalgorithmforsdes
AT hefterm anadaptiverandombitmultilevelalgorithmforsdes
AT mayerl anadaptiverandombitmultilevelalgorithmforsdes
AT ritterk anadaptiverandombitmultilevelalgorithmforsdes
AT gilesmb adaptiverandombitmultilevelalgorithmforsdes
AT hefterm adaptiverandombitmultilevelalgorithmforsdes
AT mayerl adaptiverandombitmultilevelalgorithmforsdes
AT ritterk adaptiverandombitmultilevelalgorithmforsdes