CoordGate: efficiently computing spatially-varying convolutions in convolutional neural networks
Optical imaging systems are inherently limited in their resolution due to the point spread function (PSF), which applies a static, yet spatially-varying, convolution to the image. This degradation can be addressed via Convolutional Neural Networks (CNNs), particularly through deblurring techniques....
Main Authors: | Howard, S, Norreys, P, Döpp, A |
---|---|
Format: | Conference item |
Sprog: | English |
Udgivet: |
British Machine Vision Association
2023
|
Lignende værker
-
Convolutional Neural Network with Spatial-Variant Convolution Kernel
af: Yongpeng Dai, et al.
Udgivet: (2020-08-01) -
Efficient Gated Convolutional Recurrent Neural Networks for Real-Time Speech Enhancement
af: Fazal-E -Wahab, et al.
Udgivet: (2025-01-01) -
Process tomography of structured optical gates with convolutional neural networks
af: Tareq Jaouni, et al.
Udgivet: (2024-01-01) -
An energy-efficient convolution unit for depthwise separable convolutional neural networks
af: Chong, Yi Sheng, et al.
Udgivet: (2021) -
Efficient field‐programmable gate array‐based reconfigurable accelerator for deep convolution neural network
af: Xianghong Hu, et al.
Udgivet: (2021-03-01)