Optimizing polyphase sequences for orthogonal netted radar

Orthogonal netted radar transmitter signals require a very low aperiodic autocorrelation peak sidelobe level (PSL), low aperiodic cross-correlation, and a good resilience to small Doppler shifts. A new set of polyphase sequences is presented with good correlation properties as well as resilience to...

Full description

Bibliographic Details
Main Authors: Khan, H, Zhang, Y, Ji, C, Stevens, C, Edwards, D, O'Brien, D
Format: Journal article
Language:English
Published: 2006
Description
Summary:Orthogonal netted radar transmitter signals require a very low aperiodic autocorrelation peak sidelobe level (PSL), low aperiodic cross-correlation, and a good resilience to small Doppler shifts. A new set of polyphase sequences is presented with good correlation properties as well as resilience to Doppler shifts. These sequences are built using numerical optimization based on correlation properties. A structural constraint is imposed on the optimized polyphase sequences, which maintains Doppler tolerance. Cross entropy (CE) technique is used to optimize the sequences. Correlation and Doppler results are compared with best-known sequences on various merit factors and shown to be superior. © 2006 IEEE.