Efficient fault-tolerant quantum computing

Quantum computing - the processing of information according to the fundamental laws of physics - offers a means to solve efficiently a small but significant set of classically intractable problems. Quantum computers are based on the controlled manipulation of entangled quantum states, which are extr...

Full description

Bibliographic Details
Main Author: Steane, A
Format: Journal article
Language:English
Published: 1999
_version_ 1797070877145169920
author Steane, A
author_facet Steane, A
author_sort Steane, A
collection OXFORD
description Quantum computing - the processing of information according to the fundamental laws of physics - offers a means to solve efficiently a small but significant set of classically intractable problems. Quantum computers are based on the controlled manipulation of entangled quantum states, which are extremely sensitive to noise and imprecision; active correction of errors must therefore be implemented without causing loss of coherence. Quantum error-correction theory has made great progress in this regard, by predicting error-correcting 'codeword' quantum states. But the coding is inefficient and requires many quantum bits, which results in physically unwieldy fault- tolerant quantum circuits. Here I report a general technique for circumventing the trade-off between the achieved noise tolerance and the scale-up in computer size that is required to realize the error correction. I adapt the recovery operation (the process by which noise is suppressed through error detection and correction) to simultaneously correct errors and perform a useful measurement that drives the computation. The result is that a quantum computer need be only an order of magnitude larger than the logic device contained within it. For example, the physical scale-up factor required to factorize a thousand-digit number is reduced from 1,500 to 22, while preserving the original tolerated gate error rate (10-5) and memory noise per bit (10-7). The difficulty of realizing a useful quantum computer is therefore significantly reduced.
first_indexed 2024-03-06T22:45:19Z
format Journal article
id oxford-uuid:5cf91cf8-d843-4f55-af12-d881b320ca1b
institution University of Oxford
language English
last_indexed 2024-03-06T22:45:19Z
publishDate 1999
record_format dspace
spelling oxford-uuid:5cf91cf8-d843-4f55-af12-d881b320ca1b2022-03-26T17:31:28ZEfficient fault-tolerant quantum computingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5cf91cf8-d843-4f55-af12-d881b320ca1bEnglishSymplectic Elements at Oxford1999Steane, AQuantum computing - the processing of information according to the fundamental laws of physics - offers a means to solve efficiently a small but significant set of classically intractable problems. Quantum computers are based on the controlled manipulation of entangled quantum states, which are extremely sensitive to noise and imprecision; active correction of errors must therefore be implemented without causing loss of coherence. Quantum error-correction theory has made great progress in this regard, by predicting error-correcting 'codeword' quantum states. But the coding is inefficient and requires many quantum bits, which results in physically unwieldy fault- tolerant quantum circuits. Here I report a general technique for circumventing the trade-off between the achieved noise tolerance and the scale-up in computer size that is required to realize the error correction. I adapt the recovery operation (the process by which noise is suppressed through error detection and correction) to simultaneously correct errors and perform a useful measurement that drives the computation. The result is that a quantum computer need be only an order of magnitude larger than the logic device contained within it. For example, the physical scale-up factor required to factorize a thousand-digit number is reduced from 1,500 to 22, while preserving the original tolerated gate error rate (10-5) and memory noise per bit (10-7). The difficulty of realizing a useful quantum computer is therefore significantly reduced.
spellingShingle Steane, A
Efficient fault-tolerant quantum computing
title Efficient fault-tolerant quantum computing
title_full Efficient fault-tolerant quantum computing
title_fullStr Efficient fault-tolerant quantum computing
title_full_unstemmed Efficient fault-tolerant quantum computing
title_short Efficient fault-tolerant quantum computing
title_sort efficient fault tolerant quantum computing
work_keys_str_mv AT steanea efficientfaulttolerantquantumcomputing