Machine learning for function synthesis
<p>Function synthesis is the process of automatically constructing functions that satisfy a given specification. The space of functions as well as the format of the specifications vary greatly with each area of application. In this thesis, we consider synthesis in the context of satisfiability...
Auteur principal: | Parsert, J |
---|---|
Autres auteurs: | Kröning, D |
Format: | Thèse |
Langue: | English |
Publié: |
2024
|
Sujets: |
Documents similaires
-
Reachability and escape problems in linear dynamical systems
par: Dcosta, J
Publié: (2024) -
Safe and certified reinforcement learning with logical constraints
par: Hasanbeig, MH
Publié: (2020) -
Synthesis of Fault-Tolerant Reliable Broadcast Algorithms With Reinforcement Learning
par: Diogo Vaz, et autres
Publié: (2023-01-01) -
Parameter synthesis for parametric probabilistic dynamical systems and prefix-independent specifications
par: Baier, C, et autres
Publié: (2022) -
Reinforcement Learning in the Problem of Synthesis of Majority Schemes
par: Sergey Gurov, et autres
Publié: (2021-06-01)