Machine learning for function synthesis
<p>Function synthesis is the process of automatically constructing functions that satisfy a given specification. The space of functions as well as the format of the specifications vary greatly with each area of application. In this thesis, we consider synthesis in the context of satisfiability...
第一著者: | Parsert, J |
---|---|
その他の著者: | Kröning, D |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2024
|
主題: |
類似資料
-
Reachability and escape problems in linear dynamical systems
著者:: Dcosta, J
出版事項: (2024) -
Safe and certified reinforcement learning with logical constraints
著者:: Hasanbeig, MH
出版事項: (2020) -
Synthesis of Fault-Tolerant Reliable Broadcast Algorithms With Reinforcement Learning
著者:: Diogo Vaz, 等
出版事項: (2023-01-01) -
Parameter synthesis for parametric probabilistic dynamical systems and prefix-independent specifications
著者:: Baier, C, 等
出版事項: (2022) -
Reinforcement Learning in the Problem of Synthesis of Majority Schemes
著者:: Sergey Gurov, 等
出版事項: (2021-06-01)