Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging
Whole-brain functional magnetic resonance imaging was used to study five healthy human subjects while they performed two nonspatial visual working memory tasks and one control task. In the first memory task, the subjects were required to view a sequence of three pattern stimuli, randomly selected fr...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2000
|
_version_ | 1797071045043159040 |
---|---|
author | Stern, C Owen, A Tracey, I Look, R Rosen, B Petrides, M |
author_facet | Stern, C Owen, A Tracey, I Look, R Rosen, B Petrides, M |
author_sort | Stern, C |
collection | OXFORD |
description | Whole-brain functional magnetic resonance imaging was used to study five healthy human subjects while they performed two nonspatial visual working memory tasks and one control task. In the first memory task, the subjects were required to view a sequence of three pattern stimuli, randomly selected from a familiar set of four stimuli, and then identify which one of three simultaneously presented stimuli was the one that had not been presented in the previous array. In the other task, the subjects were required to observe an identical sequence of three randomly selected pattern stimuli and then to respond by selecting those same stimuli in the order presented. In comparison to a baseline control task, increases in signal intensity were observed, bilaterally, in the mid-dorsolateral frontal cortex and in the right ventrolateral frontal cortex in both memory tasks. When the two tasks were compared directly, however, the first memory task, which had the higher monitoring requirement, yielded significantly greater signal intensity changes in area 9/46 of the right mid-dorsolateral frontal cortex. These results provide further evidence for the precise functional contribution made by the mid-dorsolateral frontal cortex in visual working memory tasks and concur closely with findings in nonhuman primates. (C) 2000 Academic Press. |
first_indexed | 2024-03-06T22:47:32Z |
format | Journal article |
id | oxford-uuid:5dae9b76-f8cd-4b35-9462-c11152c687e8 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:47:32Z |
publishDate | 2000 |
record_format | dspace |
spelling | oxford-uuid:5dae9b76-f8cd-4b35-9462-c11152c687e82022-03-26T17:35:59ZActivity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imagingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5dae9b76-f8cd-4b35-9462-c11152c687e8EnglishSymplectic Elements at Oxford2000Stern, COwen, ATracey, ILook, RRosen, BPetrides, MWhole-brain functional magnetic resonance imaging was used to study five healthy human subjects while they performed two nonspatial visual working memory tasks and one control task. In the first memory task, the subjects were required to view a sequence of three pattern stimuli, randomly selected from a familiar set of four stimuli, and then identify which one of three simultaneously presented stimuli was the one that had not been presented in the previous array. In the other task, the subjects were required to observe an identical sequence of three randomly selected pattern stimuli and then to respond by selecting those same stimuli in the order presented. In comparison to a baseline control task, increases in signal intensity were observed, bilaterally, in the mid-dorsolateral frontal cortex and in the right ventrolateral frontal cortex in both memory tasks. When the two tasks were compared directly, however, the first memory task, which had the higher monitoring requirement, yielded significantly greater signal intensity changes in area 9/46 of the right mid-dorsolateral frontal cortex. These results provide further evidence for the precise functional contribution made by the mid-dorsolateral frontal cortex in visual working memory tasks and concur closely with findings in nonhuman primates. (C) 2000 Academic Press. |
spellingShingle | Stern, C Owen, A Tracey, I Look, R Rosen, B Petrides, M Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging |
title | Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging |
title_full | Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging |
title_fullStr | Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging |
title_full_unstemmed | Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging |
title_short | Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging |
title_sort | activity in ventrolateral and mid dorsolateral prefrontal cortex during nonspatial visual working memory processing evidence from functional magnetic resonance imaging |
work_keys_str_mv | AT sternc activityinventrolateralandmiddorsolateralprefrontalcortexduringnonspatialvisualworkingmemoryprocessingevidencefromfunctionalmagneticresonanceimaging AT owena activityinventrolateralandmiddorsolateralprefrontalcortexduringnonspatialvisualworkingmemoryprocessingevidencefromfunctionalmagneticresonanceimaging AT traceyi activityinventrolateralandmiddorsolateralprefrontalcortexduringnonspatialvisualworkingmemoryprocessingevidencefromfunctionalmagneticresonanceimaging AT lookr activityinventrolateralandmiddorsolateralprefrontalcortexduringnonspatialvisualworkingmemoryprocessingevidencefromfunctionalmagneticresonanceimaging AT rosenb activityinventrolateralandmiddorsolateralprefrontalcortexduringnonspatialvisualworkingmemoryprocessingevidencefromfunctionalmagneticresonanceimaging AT petridesm activityinventrolateralandmiddorsolateralprefrontalcortexduringnonspatialvisualworkingmemoryprocessingevidencefromfunctionalmagneticresonanceimaging |