HLA-C level is regulated by a polymorphic Oct1 binding site in the HLA-C promoter region

Differential HLA-C levels influence several human diseases, but the mechanisms responsible are incompletely characterized. Using a validated prediction algorithm, we imputed HLA-C cell surface levels in 228 individuals from the 1000 Genomes dataset. We tested 68,726 SNPs within the MHC for associati...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Vince, N, Li, H, Ramsuran, V, Naranbhai, V, Duh, F, Fairfax, B, Saleh, B, Knight, J, Anderson, S, Carrington, M
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Elsevier 2016
Miêu tả
Tóm tắt:Differential HLA-C levels influence several human diseases, but the mechanisms responsible are incompletely characterized. Using a validated prediction algorithm, we imputed HLA-C cell surface levels in 228 individuals from the 1000 Genomes dataset. We tested 68,726 SNPs within the MHC for association with HLA-C level. The HLA-C promoter region variant, rs2395471, 800 bp upstream of the transcription start site, gave the most significant association with HLA-C levels (p = 4.2 × 10(-66)). This imputed expression quantitative trait locus, termed impeQTL, was also shown to associate with HLA-C expression in a genome-wide association study of 273 donors in which HLA-C mRNA expression levels were determined by quantitative PCR (qPCR) (p = 1.8 × 10(-20)) and in two cohorts where HLA-C cell surface levels were determined directly by flow cytometry (n = 369 combined, p < 10(-15)). rs2395471 is located in an Oct1 transcription factor consensus binding site motif where the A allele is predicted to have higher affinity for Oct1 than the G allele. Mobility shift electrophoresis demonstrated that Oct1 binds to both alleles in vitro, but decreased HLA-C promoter activity was observed in a luciferase reporter assay for rs2395471_G relative to rs2395471_A on a fixed promoter background. The rs2395471 variant accounts for up to 36% of the explained variation of HLA-C level. These data strengthen our understanding of HLA-C transcriptional regulation and provide a basis for understanding the potential consequences of manipulating HLA-C levels therapeutically.