AdaGeo: Adaptive geometric learning for optimization and sampling
Gradient-based optimization and Markov Chain Monte Carlo sampling can be found at the heart of a multitude of machine learning methods. In high-dimensional settings, well-known issues such as slow-mixing, non-convexity and correlations can hinder the algorithms’ efficiency. In order to overcome thes...
Главные авторы: | Abbati, G, Tosi, A, Osborne, M, Flaxman, S |
---|---|
Формат: | Conference item |
Опубликовано: |
Proceedings of Machine Learning Research
2018
|
Схожие документы
-
Geo-metrics : the metric application of geometric tolerancing/
по: 429133 Foster, Lowell W.
Опубликовано: (1974) -
On Using GeoGebra and ChatGPT for Geometric Discovery
по: Francisco Botana, и др.
Опубликовано: (2024-07-01) -
Ada madu ada racun /
по: Adnil Zaff, author
Опубликовано: (2013) -
AdaCB: An Adaptive Gradient Method with Convergence Range Bound of Learning Rate
по: Xuanzhi Liao, и др.
Опубликовано: (2022-09-01) -
Kejap ada kejap tak ada /
по: Ebriza Md. Aminnudin, 1977- author
Опубликовано: (2013)