A conditional deep generative model of people in natural images
We propose a deep generative model of humans in natural images which keeps 2D pose separated from other latent factors of variation, such as background scene and clothing. In contrast to methods that learn generative models of low-dimensional representations, e.g., segmentation masks and 2D skeleton...
Autors principals: | De Bem, R, Ghosh, A, Boukhayma, A, Ajanthan, T, Siddharth, N, Torr, P |
---|---|
Format: | Conference item |
Publicat: |
IEEE
2019
|
Ítems similars
-
DGPose: Deep Generative Models for Human Body Analysis
per: de Bem, R, et al.
Publicat: (2020) -
A semi-supervised deep generative model for human body analysis
per: De Bem, R, et al.
Publicat: (2019) -
3D hand shape and pose from images in the wild
per: Boukhayma, A, et al.
Publicat: (2020) -
Looking deep at people: towards understanding and generating humans in images with deep learning
per: de Bem, RA
Publicat: (2018) -
Cross-modal deep face normals with deactivable skip connections
per: Abrevaya, VF, et al.
Publicat: (2020)