A conditional deep generative model of people in natural images
We propose a deep generative model of humans in natural images which keeps 2D pose separated from other latent factors of variation, such as background scene and clothing. In contrast to methods that learn generative models of low-dimensional representations, e.g., segmentation masks and 2D skeleton...
Autori principali: | De Bem, R, Ghosh, A, Boukhayma, A, Ajanthan, T, Siddharth, N, Torr, P |
---|---|
Natura: | Conference item |
Pubblicazione: |
IEEE
2019
|
Documenti analoghi
-
DGPose: Deep Generative Models for Human Body Analysis
di: de Bem, R, et al.
Pubblicazione: (2020) -
A semi-supervised deep generative model for human body analysis
di: De Bem, R, et al.
Pubblicazione: (2019) -
3D hand shape and pose from images in the wild
di: Boukhayma, A, et al.
Pubblicazione: (2020) -
Looking deep at people: towards understanding and generating humans in images with deep learning
di: de Bem, RA
Pubblicazione: (2018) -
Cross-modal deep face normals with deactivable skip connections
di: Abrevaya, VF, et al.
Pubblicazione: (2020)