A conditional deep generative model of people in natural images
We propose a deep generative model of humans in natural images which keeps 2D pose separated from other latent factors of variation, such as background scene and clothing. In contrast to methods that learn generative models of low-dimensional representations, e.g., segmentation masks and 2D skeleton...
Автори: | De Bem, R, Ghosh, A, Boukhayma, A, Ajanthan, T, Siddharth, N, Torr, P |
---|---|
Формат: | Conference item |
Опубліковано: |
IEEE
2019
|
Схожі ресурси
Схожі ресурси
-
DGPose: Deep Generative Models for Human Body Analysis
за авторством: de Bem, R, та інші
Опубліковано: (2020) -
A semi-supervised deep generative model for human body analysis
за авторством: De Bem, R, та інші
Опубліковано: (2019) -
3D hand shape and pose from images in the wild
за авторством: Boukhayma, A, та інші
Опубліковано: (2020) -
Looking deep at people: towards understanding and generating humans in images with deep learning
за авторством: de Bem, RA
Опубліковано: (2018) -
Cross-modal deep face normals with deactivable skip connections
за авторством: Abrevaya, VF, та інші
Опубліковано: (2020)