Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization
Chordal and factor-width decomposition methods for semidefinite programming and polynomial optimization have recently enabled the analysis and control of large-scale linear systems and medium-scale nonlinear systems. Chordal decomposition exploits the sparsity of semidefinite matrices in a semidefin...
Main Authors: | Zheng, Y, Fantuzzi, G, Papachristodoulou, A |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
Elsevier
2021
|
Títulos similares
-
Chordal decomposition in operator-splitting methods for sparse semidefinite programs
por: Zheng, Y, et al.
Publicado: (2019) -
Fast ADMM for semidefinite programs with chordal sparsity
por: Zheng, Y, et al.
Publicado: (2017) -
Chordal decomposition in rank minimized semidefinite programs with applications to subspace clustering
por: Miller, J, et al.
Publicado: (2020) -
Scalable design of structured controllers using chordal decomposition
por: Zheng, Y, et al.
Publicado: (2017) -
A chordal decomposition approach to scalable design of structured feedback gains over directed graphs
por: Zheng, Y, et al.
Publicado: (2016)