Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome
Interrogation of gene regulatory circuits in complex organisms requires precise tools for the selection of individual cell types and robust methods for biochemical profiling of target proteins. We have developed a versatile, tissue-specific binary in vivo biotinylation system in zebrafish termed bio...
Main Authors: | , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Cell Press
2017
|
_version_ | 1797071458314223616 |
---|---|
author | Trinh, L Chong-Morrison, V Gavriouchkina, D Hochgreb-Hägele, T Senanayake, U Fraser, S Sauka-Spengler, T |
author_facet | Trinh, L Chong-Morrison, V Gavriouchkina, D Hochgreb-Hägele, T Senanayake, U Fraser, S Sauka-Spengler, T |
author_sort | Trinh, L |
collection | OXFORD |
description | Interrogation of gene regulatory circuits in complex organisms requires precise tools for the selection of individual cell types and robust methods for biochemical profiling of target proteins. We have developed a versatile, tissue-specific binary in vivo biotinylation system in zebrafish termed biotagging that uses genetically encoded components to biotinylate target proteins, enabling in-depth genome-wide analyses of their molecular interactions. Using tissue-specific drivers and cell-compartment-specific effector lines, we demonstrate the specificity of the biotagging toolkit at the biochemical, cellular, and transcriptional levels. We use biotagging to characterize the in vivo transcriptional landscape of migratory neural crest and myocardial cells in different cellular compartments (ribosomes and nucleus). These analyses reveal a comprehensive network of coding and non-coding RNAs and cis-regulatory modules, demonstrating that tissue-specific identity is embedded in the nuclear transcriptomes. By eliminating background inherent to complex embryonic environments, biotagging allows analyses of molecular interactions at high resolution. |
first_indexed | 2024-03-06T22:53:32Z |
format | Journal article |
id | oxford-uuid:5f9b33f9-722a-4bc3-adef-2e1c03382e51 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:53:32Z |
publishDate | 2017 |
publisher | Cell Press |
record_format | dspace |
spelling | oxford-uuid:5f9b33f9-722a-4bc3-adef-2e1c03382e512022-03-26T17:48:03ZBiotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptomeJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:5f9b33f9-722a-4bc3-adef-2e1c03382e51EnglishSymplectic Elements at OxfordCell Press2017Trinh, LChong-Morrison, VGavriouchkina, DHochgreb-Hägele, TSenanayake, UFraser, SSauka-Spengler, TInterrogation of gene regulatory circuits in complex organisms requires precise tools for the selection of individual cell types and robust methods for biochemical profiling of target proteins. We have developed a versatile, tissue-specific binary in vivo biotinylation system in zebrafish termed biotagging that uses genetically encoded components to biotinylate target proteins, enabling in-depth genome-wide analyses of their molecular interactions. Using tissue-specific drivers and cell-compartment-specific effector lines, we demonstrate the specificity of the biotagging toolkit at the biochemical, cellular, and transcriptional levels. We use biotagging to characterize the in vivo transcriptional landscape of migratory neural crest and myocardial cells in different cellular compartments (ribosomes and nucleus). These analyses reveal a comprehensive network of coding and non-coding RNAs and cis-regulatory modules, demonstrating that tissue-specific identity is embedded in the nuclear transcriptomes. By eliminating background inherent to complex embryonic environments, biotagging allows analyses of molecular interactions at high resolution. |
spellingShingle | Trinh, L Chong-Morrison, V Gavriouchkina, D Hochgreb-Hägele, T Senanayake, U Fraser, S Sauka-Spengler, T Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
title | Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
title_full | Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
title_fullStr | Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
title_full_unstemmed | Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
title_short | Biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
title_sort | biotagging of specific cell populations in zebrafish reveals gene regulatory logic encoded in the nuclear transcriptome |
work_keys_str_mv | AT trinhl biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome AT chongmorrisonv biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome AT gavriouchkinad biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome AT hochgrebhagelet biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome AT senanayakeu biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome AT frasers biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome AT saukaspenglert biotaggingofspecificcellpopulationsinzebrafishrevealsgeneregulatorylogicencodedinthenucleartranscriptome |