Dislocation modeling of quasi-static crack propagation in an elasto-plastic medium

A dislocation model for simulating two-dimensional quasi-static crack propagation is presented. The crack and plastic flow along slip planes are described using dislocation dipoles. A stationary crack can be modeled as well as a propagating crack along a straight line inclined at an arbitrary angle...

Full description

Bibliographic Details
Main Authors: Stoll, A, Wilkinson, A
Format: Journal article
Language:English
Published: 2010
Description
Summary:A dislocation model for simulating two-dimensional quasi-static crack propagation is presented. The crack and plastic flow along slip planes are described using dislocation dipoles. A stationary crack can be modeled as well as a propagating crack along a straight line inclined at an arbitrary angle to a free surface of a semi-infinite medium. Cracks are also allowed to kink. A superdipole algorithm is introduced to save simulation time without loosing important information and necessary geometric details. It reduces the number of dislocation dipoles on slip planes in the plastic wake. The paper gives results on crack shapes for stationary and advancing cracks as well as it describes how the size of the plastic zone depends on crack inclination angles. Results on stress intensity factors (SIF) are given using two different approaches as well as kinking cracks are introduced and SIF at kinked crack tips are calculated. © 2010 Springer Science+Business Media B.V.