Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0%Nb alloy using (S)TEM, transmission-EBSD and EELS.
Here we report a methodology combining TEM, STEM, Transmission-EBSD and EELS to analyse the structural and chemical properties of the metal-oxide interface of corroded Zr alloys in unprecedented detail. TEM, STEM and diffraction results revealed the complexity of the distribution of suboxide grains...
Main Authors: | , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2015
|
Summary: | Here we report a methodology combining TEM, STEM, Transmission-EBSD and EELS to analyse the structural and chemical properties of the metal-oxide interface of corroded Zr alloys in unprecedented detail. TEM, STEM and diffraction results revealed the complexity of the distribution of suboxide grains at the metal-oxide interface. EELS provided accurate quantitative analysis of the oxygen concentration across the interface, identifying the existence of local regions of stoichiometric ZrO and Zr3O2 with varying thickness. Transmission-EBSD confirmed that the suboxide grains can be indexed with the hexagonal ZrO structure predicted with ab initio by Nicholls et al. (2014). The t-EBSD analysis has also allowed for the mapping of a relatively large region of the metal-oxide interface, revealing the location and size distribution of the suboxide grains. |
---|