Pairwise joint modeling of clustered and high-dimensional outcomes with covariate missingness in pediatric pneumonia care
Multiple outcomes reflecting different aspects of routine care are a common phenomenon in health care research. A common approach of handling such outcomes is multiple univariate analyses, an approach which does not allow for answering research questions pertaining to joint inference. In this study,...
المؤلفون الرئيسيون: | Gachau, S, Njagi, EN, Molenberghs, G, Owuor, N, Sarguta, R, English, M, Ayieko, P |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Wiley
2022
|
مواد مشابهة
-
Analysis of hierarchical routine data with covariate missingness: effects of audit and feedback on clinicians' prescribed pediatric pneumonia care in Kenyan hospitals
حسب: Gachau, S, وآخرون
منشور في: (2019) -
Handling missing data in a composite outcome with partially observed components: simulation study based on clustered paediatric routine data
حسب: Gachau, S, وآخرون
منشور في: (2021) -
Handling missing data in modelling quality of clinician-prescribed routine care: sensitivity analysis of departure from missing at random assumption
حسب: Gachau, S, وآخرون
منشور في: (2020) -
Multiple Imputation for Robust Cluster Analysis to Address Missingness in Medical Data
حسب: Arnold A. Harder, وآخرون
منشور في: (2024-01-01) -
A Conference (Missingness in Action) to Address Missingness in Data and AI in Health Care: Qualitative Thematic Analysis
حسب: Christian Rose, وآخرون
منشور في: (2023-11-01)