Toric geometry and dualities of string theory
It seems that all string theories and D = 11 supergravity are different limits of one underlying theory. These 'different' string theories are related by dualities. One of these leads to the following identifications:Het[K3 x T-2, V-Y] = IIB[Y]Het[Z(X), V-X] = F[X]Here Y and Z are Calabi-Y...
Autor principal: | Candelas, P |
---|---|
Formato: | Conference item |
Publicado em: |
1999
|
Registros relacionados
-
Toric geometry and dualities of string theory
por: Candelas, P
Publicado em: (1999) -
F-theory, SO(32) and Toric Geometry
por: Candelas, P, et al.
Publicado em: (1997) -
Heterotic string compactification and quiver gauge theory on toric geometry
por: Sun, C
Publicado em: (2016) -
Matter from Toric Geometry
por: Candelas, P, et al.
Publicado em: (1997) -
Toric Calabi-Yau Fourfolds, Duality Between N=1 Theories and Divisors
that Contribute to the Superpotential
por: Braun, V, et al.
Publicado em: (2000)