Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom
The effect of the type of heteroatom in the structure on the recyclability of possible candidate compounds for application as LOC (liquid organic carriers) was studied by comparing the rate and selectivity obtained in hydrogenation of carbazole, dibenzothiophene, dibenzofuran and fluorene. The effec...
Main Authors: | , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2015
|
_version_ | 1797071892500185088 |
---|---|
author | Eblagon, K Tsang, S |
author_facet | Eblagon, K Tsang, S |
author_sort | Eblagon, K |
collection | OXFORD |
description | The effect of the type of heteroatom in the structure on the recyclability of possible candidate compounds for application as LOC (liquid organic carriers) was studied by comparing the rate and selectivity obtained in hydrogenation of carbazole, dibenzothiophene, dibenzofuran and fluorene. The effect of a partial saturation of the compound on its hydrogenation yield and reaction pathway was also considered by studying hydrogenation of 1,2,3,4-tetrahydrocarbazole. Using Ru black catalyst, the rate of hydrogenation was found to decrease in order; dibenzofuran. >. 1,2,3,4-tetrahydrocarbazole. >. carbazole. >>. fluorene. No reaction was observed in the hydrogenation of dibenzothiophene under the conditions studied which was attributed to the immediate poisoning of ruthenium metal by sulphur compounds. The rate of hydrogenation of fluorene was around 3 times lower as compared to carbazole and over 8 times lower as compared to that of dibenzofuran under the same reaction conditions. With the exeption of S containing dibenzothiophene, the presence of the heteroatom in the structure was found to be beneficial in terms of increasing the rate of hydrogen loading step. Additionally, a higher reaction rate was obtained in the hydrogenation of the partially saturated 1,2,3,4-tetrahydrocarbazole as compared to the substrate carbazole. The structure and stability of intermediates was found to be significantly influenced by the type and presence of a heteroatom in the structure. A stable octahydro-intermediate was observed only with N-heterocycles, whereas a stable hexahydro-intermediate was produced in the polyaromatic hydrocarbon-fluorene. Additionally, the theoretically obtained lowest total enthalpies using DFT calculations agreed well with the stable intermediates observed experimentally in the hydrogenation of fluorene. Theoretical DFT differences in enthalpies also indicated the products of hydrogenolysis of perhydro-dibenzofuran to be the most favourable products of its hydrogenation, which agreed well with the experimental observations. Overall, taking into account the recyclability of LOC, substitution of carbon with a N heteroatom was demonstrated to be one of the promising approaches to improve the kinetics of the hydrogen loading step. |
first_indexed | 2024-03-06T22:59:50Z |
format | Journal article |
id | oxford-uuid:61b64fb7-7af3-4af0-a5c5-fa452a642a6b |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:59:50Z |
publishDate | 2015 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:61b64fb7-7af3-4af0-a5c5-fa452a642a6b2022-03-26T18:01:44ZStructure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatomJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:61b64fb7-7af3-4af0-a5c5-fa452a642a6bEnglishSymplectic Elements at OxfordElsevier2015Eblagon, KTsang, SThe effect of the type of heteroatom in the structure on the recyclability of possible candidate compounds for application as LOC (liquid organic carriers) was studied by comparing the rate and selectivity obtained in hydrogenation of carbazole, dibenzothiophene, dibenzofuran and fluorene. The effect of a partial saturation of the compound on its hydrogenation yield and reaction pathway was also considered by studying hydrogenation of 1,2,3,4-tetrahydrocarbazole. Using Ru black catalyst, the rate of hydrogenation was found to decrease in order; dibenzofuran. >. 1,2,3,4-tetrahydrocarbazole. >. carbazole. >>. fluorene. No reaction was observed in the hydrogenation of dibenzothiophene under the conditions studied which was attributed to the immediate poisoning of ruthenium metal by sulphur compounds. The rate of hydrogenation of fluorene was around 3 times lower as compared to carbazole and over 8 times lower as compared to that of dibenzofuran under the same reaction conditions. With the exeption of S containing dibenzothiophene, the presence of the heteroatom in the structure was found to be beneficial in terms of increasing the rate of hydrogen loading step. Additionally, a higher reaction rate was obtained in the hydrogenation of the partially saturated 1,2,3,4-tetrahydrocarbazole as compared to the substrate carbazole. The structure and stability of intermediates was found to be significantly influenced by the type and presence of a heteroatom in the structure. A stable octahydro-intermediate was observed only with N-heterocycles, whereas a stable hexahydro-intermediate was produced in the polyaromatic hydrocarbon-fluorene. Additionally, the theoretically obtained lowest total enthalpies using DFT calculations agreed well with the stable intermediates observed experimentally in the hydrogenation of fluorene. Theoretical DFT differences in enthalpies also indicated the products of hydrogenolysis of perhydro-dibenzofuran to be the most favourable products of its hydrogenation, which agreed well with the experimental observations. Overall, taking into account the recyclability of LOC, substitution of carbon with a N heteroatom was demonstrated to be one of the promising approaches to improve the kinetics of the hydrogen loading step. |
spellingShingle | Eblagon, K Tsang, S Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom |
title | Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom |
title_full | Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom |
title_fullStr | Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom |
title_full_unstemmed | Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom |
title_short | Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black; Part B: Effect of carbon substitution by heteroatom |
title_sort | structure reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black part b effect of carbon substitution by heteroatom |
work_keys_str_mv | AT eblagonk structurereactivityrelationshipincatalytichydrogenationofheterocycliccompoundsoverrutheniumblackpartbeffectofcarbonsubstitutionbyheteroatom AT tsangs structurereactivityrelationshipincatalytichydrogenationofheterocycliccompoundsoverrutheniumblackpartbeffectofcarbonsubstitutionbyheteroatom |