Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Hlavní autoři: | Kirwan, F, Penington, G |
---|---|
Médium: | Working paper |
Jazyk: | English |
Vydáno: |
University of Oxford
2020
|
Podobné jednotky
-
Morse theory without nondegeneracy
Autor: Kirwan, FC, a další
Vydáno: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
Autor: Luiz G.M. Ramos, a další
Vydáno: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
Autor: Qingfang Wang
Vydáno: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
Autor: Robert Frédéric
Vydáno: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
Autor: Dandan Yang, a další
Vydáno: (2023-03-01)