Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Main Authors: | Kirwan, F, Penington, G |
---|---|
Format: | Working paper |
Sprog: | English |
Udgivet: |
University of Oxford
2020
|
Lignende værker
-
Morse theory without nondegeneracy
af: Kirwan, FC, et al.
Udgivet: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
af: Luiz G.M. Ramos, et al.
Udgivet: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
af: Qingfang Wang
Udgivet: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
af: Robert Frédéric
Udgivet: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
af: Dandan Yang, et al.
Udgivet: (2023-03-01)