Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Päätekijät: | Kirwan, F, Penington, G |
---|---|
Aineistotyyppi: | Working paper |
Kieli: | English |
Julkaistu: |
University of Oxford
2020
|
Samankaltaisia teoksia
-
Morse theory without nondegeneracy
Tekijä: Kirwan, FC, et al.
Julkaistu: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
Tekijä: Luiz G.M. Ramos, et al.
Julkaistu: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
Tekijä: Qingfang Wang
Julkaistu: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
Tekijä: Robert Frédéric
Julkaistu: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
Tekijä: Dandan Yang, et al.
Julkaistu: (2023-03-01)