Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Auteurs principaux: | Kirwan, F, Penington, G |
---|---|
Format: | Working paper |
Langue: | English |
Publié: |
University of Oxford
2020
|
Documents similaires
-
Morse theory without nondegeneracy
par: Kirwan, FC, et autres
Publié: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
par: Luiz G.M. Ramos, et autres
Publié: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
par: Qingfang Wang
Publié: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
par: Robert Frédéric
Publié: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
par: Dandan Yang, et autres
Publié: (2023-03-01)