Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Główni autorzy: | Kirwan, F, Penington, G |
---|---|
Format: | Working paper |
Język: | English |
Wydane: |
University of Oxford
2020
|
Podobne zapisy
-
Morse theory without nondegeneracy
od: Kirwan, FC, i wsp.
Wydane: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
od: Luiz G.M. Ramos, i wsp.
Wydane: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
od: Qingfang Wang
Wydane: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
od: Robert Frédéric
Wydane: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
od: Dandan Yang, i wsp.
Wydane: (2023-03-01)