Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Principais autores: | Kirwan, F, Penington, G |
---|---|
Formato: | Working paper |
Idioma: | English |
Publicado em: |
University of Oxford
2020
|
Registros relacionados
-
Morse theory without nondegeneracy
por: Kirwan, FC, et al.
Publicado em: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
por: Luiz G.M. Ramos, et al.
Publicado em: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
por: Qingfang Wang
Publicado em: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
por: Robert Frédéric
Publicado em: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
por: Dandan Yang, et al.
Publicado em: (2023-03-01)