Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Váldodahkkit: | Kirwan, F, Penington, G |
---|---|
Materiálatiipa: | Working paper |
Giella: | English |
Almmustuhtton: |
University of Oxford
2020
|
Geahča maid
-
Morse theory without nondegeneracy
Dahkki: Kirwan, FC, et al.
Almmustuhtton: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
Dahkki: Luiz G.M. Ramos, et al.
Almmustuhtton: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
Dahkki: Qingfang Wang
Almmustuhtton: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
Dahkki: Robert Frédéric
Almmustuhtton: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
Dahkki: Dandan Yang, et al.
Almmustuhtton: (2023-03-01)