Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Huvudupphovsmän: | Kirwan, F, Penington, G |
---|---|
Materialtyp: | Working paper |
Språk: | English |
Publicerad: |
University of Oxford
2020
|
Liknande verk
Liknande verk
-
Morse theory without nondegeneracy
av: Kirwan, FC, et al.
Publicerad: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
av: Luiz G.M. Ramos, et al.
Publicerad: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
av: Qingfang Wang
Publicerad: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
av: Robert Frédéric
Publicerad: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
av: Dandan Yang, et al.
Publicerad: (2023-03-01)