Learning inertial odometry for dynamic legged robot state estimation
This paper introduces a novel proprioceptive state estimator for legged robots based on a learned displacement measurement from IMU data. Recent research in pedestrian tracking has shown that motion can be inferred from inertial data using convolutional neural networks. A learned inertial displaceme...
Päätekijät: | , , , |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
Journal of Machine Learning Research
2022
|