Solution to a problem of Bollobás and Häggkvist on Hamilton cycles in regular graphs
We prove that, for large n, every 3-connected D-regular graph on n vertices with is Hamiltonian. This is best possible and verifies the only remaining case of a conjecture posed independently by Bollobás and Häggkvist in the 1970s. The proof builds on a structural decomposition result proved recent...
Auteurs principaux: | Kühn, D, Lo, A, Osthus, D, Staden, K |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2015
|
Documents similaires
-
An exact minimum degree condition for Hamilton cycles in oriented graphs
par: Keevash, P, et autres
Publié: (2008) -
Matchings and Hamilton cycles in hypergraphs
par: Daniela Kühn, et autres
Publié: (2005-01-01) -
A counterexample to the Bollobás–Riordan conjectures on sparse graph limits
par: Sah, Ashwin, et autres
Publié: (2021) -
A counterexample to the Bollobás–Riordan conjectures on sparse graph limits
par: Sah, Ashwin, et autres
Publié: (2021) -
On the Bishop-Phelps-Bollobás Property for Numerical Radius
par: Sun Kwang Kim, et autres
Publié: (2014-01-01)