Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice.
It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map s...
主要な著者: | , , |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2006
|
_version_ | 1826275746172108800 |
---|---|
author | Valdar, W Flint, J Mott, R |
author_facet | Valdar, W Flint, J Mott, R |
author_sort | Valdar, W |
collection | OXFORD |
description | It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map small genetic effects. We show that for a fixed population of 1000 individuals, 500 RI lines bred using a modified version of the collaborative cross design are adequate to map a single additive locus that accounts for 5% of the phenotypic variation to within 0.96 cM. In the presence of strong epistasis more strains can improve detection, but 500 lines still provide sufficient resolution to meet most goals of the collaborative cross. However, even with a very large panel of RILs, mapping resolution may not be sufficient to identify single genes unambiguously. Our results are generally applicable to the design of RILs in other species. |
first_indexed | 2024-03-06T23:03:28Z |
format | Journal article |
id | oxford-uuid:62fb9bdd-ce0f-4465-8ed1-20a21dbc7160 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T23:03:28Z |
publishDate | 2006 |
record_format | dspace |
spelling | oxford-uuid:62fb9bdd-ce0f-4465-8ed1-20a21dbc71602022-03-26T18:09:50ZSimulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:62fb9bdd-ce0f-4465-8ed1-20a21dbc7160EnglishSymplectic Elements at Oxford2006Valdar, WFlint, JMott, RIt has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map small genetic effects. We show that for a fixed population of 1000 individuals, 500 RI lines bred using a modified version of the collaborative cross design are adequate to map a single additive locus that accounts for 5% of the phenotypic variation to within 0.96 cM. In the presence of strong epistasis more strains can improve detection, but 500 lines still provide sufficient resolution to meet most goals of the collaborative cross. However, even with a very large panel of RILs, mapping resolution may not be sufficient to identify single genes unambiguously. Our results are generally applicable to the design of RILs in other species. |
spellingShingle | Valdar, W Flint, J Mott, R Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. |
title | Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. |
title_full | Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. |
title_fullStr | Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. |
title_full_unstemmed | Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. |
title_short | Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. |
title_sort | simulating the collaborative cross power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice |
work_keys_str_mv | AT valdarw simulatingthecollaborativecrosspowerofquantitativetraitlocidetectionandmappingresolutioninlargesetsofrecombinantinbredstrainsofmice AT flintj simulatingthecollaborativecrosspowerofquantitativetraitlocidetectionandmappingresolutioninlargesetsofrecombinantinbredstrainsofmice AT mottr simulatingthecollaborativecrosspowerofquantitativetraitlocidetectionandmappingresolutioninlargesetsofrecombinantinbredstrainsofmice |