Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.

Generator-collector electrode systems allow redox processes and reaction intermediates from multi-step electrode reactions to be monitored. Analytically, collector electrode current responses are insightful and highly sensitive due to (i) the absence of capacitive current components and (ii) an enha...

Full description

Bibliographic Details
Main Authors: Rassaei, L, French, R, Compton, R, Marken, F
Format: Journal article
Language:English
Published: 2009
_version_ 1797072159809470464
author Rassaei, L
French, R
Compton, R
Marken, F
author_facet Rassaei, L
French, R
Compton, R
Marken, F
author_sort Rassaei, L
collection OXFORD
description Generator-collector electrode systems allow redox processes and reaction intermediates from multi-step electrode reactions to be monitored. Analytically, collector electrode current responses are insightful and highly sensitive due to (i) the absence of capacitive current components and (ii) an enhanced current response due to 'feedback' between generator and collector electrode. Here, a symmetric gold-gold junction grown by controlled electro-deposition is employed for generator-collector voltammetry in conjunction with microwave activation. Three redox systems are investigated in aqueous 0.1 M KOH: (i) the reduction of Fe(CN)(6)(3)(-), (ii) the reduction of chloramphenicol, and (iii) the reduction of oxygen. Microwave radiation, when focused into the electrode-solution interfacial zone, causes locally enhanced temperatures with electrode surface temperatures reaching up to typically 380 K (estimated from the shift in the Fe(CN)(6)(3)(-/4)(-) equilibrium potential, at both gold electrodes). The resulting increase in the rate of diffusion and the onset of convection result in non-linear Arrhenius limiting current characteristics and in an increase in collection efficiency with microwave power. The gold electrode junction geometry allows diffusion effects (which increase the feedback current within the gap) to dominate over convection effects (which suppress the feedback current).
first_indexed 2024-03-06T23:03:40Z
format Journal article
id oxford-uuid:630bd065-16d5-4f85-b1e6-2d8ec7caa547
institution University of Oxford
language English
last_indexed 2024-03-06T23:03:40Z
publishDate 2009
record_format dspace
spelling oxford-uuid:630bd065-16d5-4f85-b1e6-2d8ec7caa5472022-03-26T18:10:14ZMicrowave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:630bd065-16d5-4f85-b1e6-2d8ec7caa547EnglishSymplectic Elements at Oxford2009Rassaei, LFrench, RCompton, RMarken, FGenerator-collector electrode systems allow redox processes and reaction intermediates from multi-step electrode reactions to be monitored. Analytically, collector electrode current responses are insightful and highly sensitive due to (i) the absence of capacitive current components and (ii) an enhanced current response due to 'feedback' between generator and collector electrode. Here, a symmetric gold-gold junction grown by controlled electro-deposition is employed for generator-collector voltammetry in conjunction with microwave activation. Three redox systems are investigated in aqueous 0.1 M KOH: (i) the reduction of Fe(CN)(6)(3)(-), (ii) the reduction of chloramphenicol, and (iii) the reduction of oxygen. Microwave radiation, when focused into the electrode-solution interfacial zone, causes locally enhanced temperatures with electrode surface temperatures reaching up to typically 380 K (estimated from the shift in the Fe(CN)(6)(3)(-/4)(-) equilibrium potential, at both gold electrodes). The resulting increase in the rate of diffusion and the onset of convection result in non-linear Arrhenius limiting current characteristics and in an increase in collection efficiency with microwave power. The gold electrode junction geometry allows diffusion effects (which increase the feedback current within the gap) to dominate over convection effects (which suppress the feedback current).
spellingShingle Rassaei, L
French, R
Compton, R
Marken, F
Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
title Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
title_full Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
title_fullStr Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
title_full_unstemmed Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
title_short Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
title_sort microwave enhanced electroanalytical processes generator collector voltammetry at paired gold electrode junctions
work_keys_str_mv AT rassaeil microwaveenhancedelectroanalyticalprocessesgeneratorcollectorvoltammetryatpairedgoldelectrodejunctions
AT frenchr microwaveenhancedelectroanalyticalprocessesgeneratorcollectorvoltammetryatpairedgoldelectrodejunctions
AT comptonr microwaveenhancedelectroanalyticalprocessesgeneratorcollectorvoltammetryatpairedgoldelectrodejunctions
AT markenf microwaveenhancedelectroanalyticalprocessesgeneratorcollectorvoltammetryatpairedgoldelectrodejunctions