Unsupervised feature extraction of aerial images for clustering and understanding hazardous road segments
Aerial image data are becoming more widely available, and analysis techniques based on supervised learning are advancing their use in a wide variety of remote sensing contexts. However, supervised learning requires training datasets which are not always available or easy to construct with aerial ima...
Автори: | Francis, J, Bright, J, Esnaashari, S, Hashem, Y, Morgan, D, Straub, VJ |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Springer Nature
2023
|
Схожі ресурси
Схожі ресурси
-
A multidomain relational framework to guide institutional AI research and adoption
за авторством: Straub, VJ, та інші
Опубліковано: (2023) -
Invariant information clustering for unsupervised image classification and segmentation
за авторством: Ji, X, та інші
Опубліковано: (2020) -
Unsupervised action segmentation in videos with clustering algorithms
за авторством: Lim, Isaac Sheng Yang
Опубліковано: (2024) -
Unsupervised image segmentation using robust clustering
за авторством: Pan, Hong
Опубліковано: (2008) -
Unsupervised clustering based coronary artery segmentation
за авторством: Belén Serrano-Antón, та інші
Опубліковано: (2025-03-01)