Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Үндсэн зохиолчид: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Rinton Press
2019
|
Ижил төстэй зүйлс
-
Learning hard quantum distributions with variational autoencoders
-н: Rocchetto, A, зэрэг
Хэвлэсэн: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
-н: Banchi, L, зэрэг
Хэвлэсэн: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
-н: Leonardo Banchi, зэрэг
Хэвлэсэн: (2018-01-01) -
Experimental learning of quantum states
-н: Rocchetto, A, зэрэг
Хэвлэсэн: (2019) -
Algorithmic models in quantum mechanics
-н: Rocchetto, A
Хэвлэсэн: (2019)