Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Váldodahkkit: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
Rinton Press
2019
|
Geahča maid
-
Learning hard quantum distributions with variational autoencoders
Dahkki: Rocchetto, A, et al.
Almmustuhtton: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
Dahkki: Banchi, L, et al.
Almmustuhtton: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
Dahkki: Leonardo Banchi, et al.
Almmustuhtton: (2018-01-01) -
Experimental learning of quantum states
Dahkki: Rocchetto, A, et al.
Almmustuhtton: (2019) -
Algorithmic models in quantum mechanics
Dahkki: Rocchetto, A
Almmustuhtton: (2019)