Quantified Legendreness and the regularity of minima

<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: De Filippis, C, Koch, L, Kristensen, J
التنسيق: Journal article
اللغة:English
منشور في: Springer 2024
الوصف
الملخص:<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic polynomials as prototypical model examples&mdash;in particular, we improve in an essentially optimal fashion Marcellini&rsquo;s original results (Marcellini in Arch Rat Mech Anal 105:267&ndash;284, 1989).</p>