Quantified Legendreness and the regularity of minima
<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic...
Hlavní autoři: | De Filippis, C, Koch, L, Kristensen, J |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer
2024
|
Podobné jednotky
Podobné jednotky
-
Quantified Legendreness and the Regularity of Minima
Autor: De Filippis, C, a další
Vydáno: (2024) -
Boundary regularity of minima
Autor: Kristensen, J, a další
Vydáno: (2008) -
On the regularity of the ω-minima of φ-functionals
Autor: De Filippis, C
Vydáno: (2019) -
On the regularity of minima of non-autonomous functionals
Autor: De Filippis, C, a další
Vydáno: (2019) -
Calculus of variations. - Boundary regularity of minima
Autor: Kristensen, J, a další
Vydáno: (2008)