Quantified Legendreness and the regularity of minima
<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic...
Main Authors: | De Filippis, C, Koch, L, Kristensen, J |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Springer
2024
|
Registos relacionados
-
Quantified Legendreness and the Regularity of Minima
Por: De Filippis, C, et al.
Publicado em: (2024) -
Boundary regularity of minima
Por: Kristensen, J, et al.
Publicado em: (2008) -
On the regularity of the ω-minima of φ-functionals
Por: De Filippis, C
Publicado em: (2019) -
On the regularity of minima of non-autonomous functionals
Por: De Filippis, C, et al.
Publicado em: (2019) -
Calculus of variations. - Boundary regularity of minima
Por: Kristensen, J, et al.
Publicado em: (2008)