Quantified Legendreness and the regularity of minima
<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic...
Главные авторы: | De Filippis, C, Koch, L, Kristensen, J |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer
2024
|
Схожие документы
-
Quantified Legendreness and the Regularity of Minima
по: De Filippis, C, и др.
Опубликовано: (2024) -
Boundary regularity of minima
по: Kristensen, J, и др.
Опубликовано: (2008) -
On the regularity of the ω-minima of φ-functionals
по: De Filippis, C
Опубликовано: (2019) -
On the regularity of minima of non-autonomous functionals
по: De Filippis, C, и др.
Опубликовано: (2019) -
Calculus of variations. - Boundary regularity of minima
по: Kristensen, J, и др.
Опубликовано: (2008)