Machine learning for accurate estimation of fetal gestational age based on ultrasound images
Accurate estimation of gestational age is an essential component of good obstetric care and informs clinical decision-making throughout pregnancy. As the date of the last menstrual period is often unknown or uncertain, ultrasound measurement of fetal size is currently the best method for estimating...
主要な著者: | Lee, LH, Bradburn, E, Craik, R, Yaqub, M, Norris, SA, Ismail, LC, Ohuma, EO, Barros, FC, Lambert, A, Carvalho, M, Jaffer, YA, Gravett, M, Purwar, M, Wu, Q, Bertino, E, Munim, S, Min, AM, Bhutta, Z, Villar, J, Kennedy, SH, Noble, JA, Papageorghiou, AT |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2023
|
主題: |
類似資料
-
Ultrasound-based gestational-age estimation in late pregnancy
著者:: Papageorghiou, AT, 等
出版事項: (2016) -
Machine learning for accurate estimation of fetal gestational age based on ultrasound images
著者:: Lok Hin Lee, 等
出版事項: (2023-03-01) -
End-to-end convolutional neural network for automatic encoding facial descriptor (N-CNN) in the diagnosis of intrauterine distress
著者:: N. V. Korotaeva, 等
出版事項: (2023-10-01) -
The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care
著者:: Papageorghiou, AT, 等
出版事項: (2018) -
International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project.
著者:: Villar, J, 等
出版事項: (2014)