Robust multigrid methods for nearly incompressible elasticity using macro elements

We present a mesh-independent and parameter-robust multigrid solver for the Scott–Vogelius discretisation of the nearly incompressible linear elasticity equations on meshes with a macro element structure. The discretisation achieves exact representation of the limiting divergence constraint at moder...

Full description

Bibliographic Details
Main Authors: Farrell, P, Mitchell, L, Scott, R, Wechsung, F
Format: Journal article
Language:English
Published: Oxford University Press 2022
Description
Summary:We present a mesh-independent and parameter-robust multigrid solver for the Scott–Vogelius discretisation of the nearly incompressible linear elasticity equations on meshes with a macro element structure. The discretisation achieves exact representation of the limiting divergence constraint at moderate polynomial degree. Both the relaxation and multigrid transfer operators exploit the macro structure for robustness and efficiency. For the relaxation we use the existence of local Fortin operators on each macro cell to construct a local space decomposition with parameter-robust convergence. For the transfer we construct a robust prolongation operator by performing small local solves over each coarse macro cell. The necessity of both components of the algorithm is confirmed by numerical experiments.