Variational Bayesian optimal experimental design
Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected information gain (EIG) of an experiment. To address this, w...
Hlavní autoři: | Foster, A, Jankowiak, M, Bingham, E, Horsfall, P, Tee, YW, Rainforth, T, Goodman, N |
---|---|
Médium: | Conference item |
Vydáno: |
Conference on Neural Information Processing Systems
2019
|
Podobné jednotky
-
A unified stochastic gradient approach to designing Bayesian-optimal experiments
Autor: Foster, A, a další
Vydáno: (2020) -
Modern Bayesian experimental design
Autor: Rainforth, T, a další
Vydáno: (2024) -
Variational, Monte Carlo and policy-based approaches to Bayesian experimental design
Autor: Foster, AE
Vydáno: (2021) -
Making better use of unlabelled data in Bayesian Active learning
Autor: Bickford Smith, F, a další
Vydáno: (2024) -
Bayesian Optimization for Probabilistic Programs
Autor: Rainforth, T, a další
Vydáno: (2016)