Variational Bayesian optimal experimental design
Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected information gain (EIG) of an experiment. To address this, w...
Hauptverfasser: | Foster, A, Jankowiak, M, Bingham, E, Horsfall, P, Tee, YW, Rainforth, T, Goodman, N |
---|---|
Format: | Conference item |
Veröffentlicht: |
Conference on Neural Information Processing Systems
2019
|
Ähnliche Einträge
Ähnliche Einträge
-
A unified stochastic gradient approach to designing Bayesian-optimal experiments
von: Foster, A, et al.
Veröffentlicht: (2020) -
Modern Bayesian experimental design
von: Rainforth, T, et al.
Veröffentlicht: (2024) -
Variational, Monte Carlo and policy-based approaches to Bayesian experimental design
von: Foster, AE
Veröffentlicht: (2021) -
Making better use of unlabelled data in Bayesian Active learning
von: Bickford Smith, F, et al.
Veröffentlicht: (2024) -
Bayesian Optimization for Probabilistic Programs
von: Rainforth, T, et al.
Veröffentlicht: (2016)