Variational Bayesian optimal experimental design
Bayesian optimal experimental design (BOED) is a principled framework for making efficient use of limited experimental resources. Unfortunately, its applicability is hampered by the difficulty of obtaining accurate estimates of the expected information gain (EIG) of an experiment. To address this, w...
主要な著者: | Foster, A, Jankowiak, M, Bingham, E, Horsfall, P, Tee, YW, Rainforth, T, Goodman, N |
---|---|
フォーマット: | Conference item |
出版事項: |
Conference on Neural Information Processing Systems
2019
|
類似資料
-
A unified stochastic gradient approach to designing Bayesian-optimal experiments
著者:: Foster, A, 等
出版事項: (2020) -
Modern Bayesian experimental design
著者:: Rainforth, T, 等
出版事項: (2024) -
Variational, Monte Carlo and policy-based approaches to Bayesian experimental design
著者:: Foster, AE
出版事項: (2021) -
Making better use of unlabelled data in Bayesian Active learning
著者:: Bickford Smith, F, 等
出版事項: (2024) -
Bayesian Optimization for Probabilistic Programs
著者:: Rainforth, T, 等
出版事項: (2016)