A Random Matrix-Theoretic Approach to Handling Singular Covariance Estimates
In many practical situations we would like to estimate the covariance matrix of a set of variables from an insufficient amount of data. More specifically, if we have a set of N independent, identically distributed measurements of an M dimensional random vector the maximum likelihood estimate is the...
Auteurs principaux: | Marzetta, T, Tucci, G, Simon, S |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2011
|
Documents similaires
-
Target Detection Using Nonsingular Approximations for a Singular Covariance Matrix
par: Nir Gorelik, et autres
Publié: (2012-01-01) -
Weighted covariance matrix estimation
par: Yang, Guangren, et autres
Publié: (2020) -
Covariance estimation on matrix manifolds
par: Musolas Otaño, Antoni M.(Antoni Maria)
Publié: (2020) -
The Effects of Data Imputation on Covariance and Inverse Covariance Matrix Estimation
par: Tuan L. Vo, et autres
Publié: (2024-01-01) -
<i>k</i>-Covariance: An Approach of Ensemble Covariance Estimation and Undersampling to Stabilize the Covariance Matrix in the Global Minimum Variance Portfolio
par: Tuan Tran, et autres
Publié: (2022-06-01)