A Random Matrix-Theoretic Approach to Handling Singular Covariance Estimates
In many practical situations we would like to estimate the covariance matrix of a set of variables from an insufficient amount of data. More specifically, if we have a set of N independent, identically distributed measurements of an M dimensional random vector the maximum likelihood estimate is the...
主要な著者: | Marzetta, T, Tucci, G, Simon, S |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2011
|
類似資料
-
Target Detection Using Nonsingular Approximations for a Singular Covariance Matrix
著者:: Nir Gorelik, 等
出版事項: (2012-01-01) -
Weighted covariance matrix estimation
著者:: Yang, Guangren, 等
出版事項: (2020) -
Covariance estimation on matrix manifolds
著者:: Musolas Otaño, Antoni M.(Antoni Maria)
出版事項: (2020) -
The Effects of Data Imputation on Covariance and Inverse Covariance Matrix Estimation
著者:: Tuan L. Vo, 等
出版事項: (2024-01-01) -
<i>k</i>-Covariance: An Approach of Ensemble Covariance Estimation and Undersampling to Stabilize the Covariance Matrix in the Global Minimum Variance Portfolio
著者:: Tuan Tran, 等
出版事項: (2022-06-01)