A Random Matrix-Theoretic Approach to Handling Singular Covariance Estimates
In many practical situations we would like to estimate the covariance matrix of a set of variables from an insufficient amount of data. More specifically, if we have a set of N independent, identically distributed measurements of an M dimensional random vector the maximum likelihood estimate is the...
Hoofdauteurs: | Marzetta, T, Tucci, G, Simon, S |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2011
|
Gelijkaardige items
-
Target Detection Using Nonsingular Approximations for a Singular Covariance Matrix
door: Nir Gorelik, et al.
Gepubliceerd in: (2012-01-01) -
Weighted covariance matrix estimation
door: Yang, Guangren, et al.
Gepubliceerd in: (2020) -
Covariance estimation on matrix manifolds
door: Musolas Otaño, Antoni M.(Antoni Maria)
Gepubliceerd in: (2020) -
The Effects of Data Imputation on Covariance and Inverse Covariance Matrix Estimation
door: Tuan L. Vo, et al.
Gepubliceerd in: (2024-01-01) -
<i>k</i>-Covariance: An Approach of Ensemble Covariance Estimation and Undersampling to Stabilize the Covariance Matrix in the Global Minimum Variance Portfolio
door: Tuan Tran, et al.
Gepubliceerd in: (2022-06-01)